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Variable selection is applied widely for visible-near infrared (Vis-NIR) spectroscopy analysis of
internal quality in fruits. Di®erent spectral variable selection methods were compared for online
quantitative analysis of soluble solids content (SSC) in navel oranges. Moving window partial
least squares (MW-PLS), Monte Carlo uninformative variables elimination (MC-UVE) and
wavelet transform (WT) combined with the MC-UVE method were used to select the spectral
variables and develop the calibration models of online analysis of SSC in navel oranges. The
performances of these methods were compared for modeling the Vis-NIR data sets of navel orange
samples. Results show that the WT-MC-UVE methods gave better calibration models with the
higher correlation coe±cient ðrÞ of 0.89 and lower root mean square error of prediction (RMSEP)
of 0.54 at 5 fruits per second. It concluded that Vis-NIR spectroscopy coupled with WT-MC-UVE
may be a fast and e®ective tool for online quantitative analysis of SSC in navel oranges.

Keywords: Vis-NIR spectroscopy; variables selection; soluble solids content; wavelet transform;
moving window partial least squares; Monte Carlo uninformative variables elimination.

1. Introduction

Visible-near infrared (Vis-NIR) spectroscopy is a
rapid, accurate and nondestructive technique,
which is widely used in the analysis of internal

quality of fruits. Faster and more accurate analysis

of the soluble solids content (SSC) in fruits is very

important to meet consumer demand. The very

simple technology, which is based on re°ectance
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model measurement, has been available for online
fruit grading since 1989. It has been well established
for internal quality evaluation of fruits.1,2

Di®erent chemometrics methods, which are used
to analyze chemistry such as multivariate cali-
bration methods, are applied to develop a quanti-
tative relation between the NIR spectra and the
concentrations.3 Objects and variables quality often
a®ects the quality of a multivariate calibration
model. Some broad, weak, nonspeci¯c and over-
lapping bands are included in NIR spectra4 and the
data matrix of the spectra is so large with thousands
of wavelengths and hundreds of samples. Some
irrelevant variables for multivariate calibration
exist, and will worsen the precision, prediction and
e±ciency of the calibration models.5

Several methods to eliminate the uninformative
variables or selection of informative variables for
improving the modeling precision, have been repor-
ted, such as regression coe±cients of partial least
squares regression,6,7 successive projections algor-
ithm (SPA),8,9 competitive adaptive reweighted
sampling (CARS)10,11 interval partial least squares
(iPLS),12,13 backward interval PLS (Bi-PLS),14

movingwindowpartial least squares (MW-PLS),15,16

stepwise regression analysis (SRA),17 Monte Carlo
combined with uninformative variables elimina-
tion (MC-UVE)18,19 and genetic algorithms (GA).20

MW-PLS and MC-UVC are the commonly used
methods for variable selection of NIR spectra. The
improvedalgorithm is used inMW-PLS16 anda series
of PLS models with varying principal components in
a window that moves over the whole spectral, and
then calculates the sums of squared residuals (SSR)
for each subset. It will locate informative spectral
intervals that have the least model complexity and
the lowest sum of residuals. MC-UVE is a faster
computation and modi¯ed method of uninformative
variables elimination (UVE) for variable selection,
which combines with the Monte Carlo (MC) tech-
nique and decreases the risk of over-¯tting.21

The objective of this study was to simplify cali-
bration models with large wavelength number of
Vis-NIR data sets for online analysis of SSC in navel
oranges. Di®erent variable selection methods were
used to improve the accuracy and e±ciency of
multivariate calibration models. MW-PLS, MC-
UVE and wavelet transform (WT) combined with
the MC-UVE methods were used to select the
spectral variables and develop the calibration
models for online analysis of SCC in navel oranges.

The performances of these methods were compared
for modeling the NIR data sets of navel orange
samples. Speci¯c objectives were (1) to establish
relationships between online Vis-NIR spectroscopy
measurements and the SCC of intact navel oranges;
(2) to compare the di®erent select variables
methods of MW-PLS, MC-UVE and WT-MC-
UVE; (3) to propose practicable and high-e±cient
modeling methods for online quantitative analysis
of SSC in navel oranges.

2. Materials and Methods

2.1. Navel Orange Samples

A total of 123 navel orange samples were purchased
at a local market in Jiangxi province, and stored
in standard refrigeration (2�C). All samples were
equilibrated in an experimental environment at
about 25�C and 60% relative humidity (RH) for
24 h before Vis-NIR di®use re°ectance spectral
measurements were performed. All measurements
including spectral collection and SSC measurement
were carried out on the same day. In order to
compare the performance of di®erent calibration
models, samples in the calibration and prediction
sets were kept unchanged for all models. By using
Kennard–Stone (KS) method, 31 navel oranges
were used for prediction set, and the remaining 92
samples were used for calibration set. In order to
ensure the adaptability of the calibration model, the
samples with the highest and lowest SSC values
were put in the calibration set.

The juice of a whole navel orange °esh was
extracted by using a manual fruit squeezer (Type
reference: MSL-218, Chengdu, China), and 1.0mL
of ¯ltered juice was taken for SSC measurement.
The SSC of navel orange samples was determined
by digital refractometer (PR-101�Cat. No3442,
ATGO, Japan). The measurement accuracy was
�0.1 �Brix, and the measurement range was 0 to
45.0 �Brix with automatic temperature compen-
sation. Statistics of SSC in navel oranges of the
calibration and prediction sets are summarized in
Table 1. The SSC measurements were fairly nor-
mally distributed around the mean value (12.34
�Brix), with the standard deviation (SD) of 1.14. In
this study, 123 samples were divided into cali-
bration and prediction sets (92:31). The SSC range
of the calibration set was from 9.50 to 15.00 �Brix,
and from 9.60 to 14.00 �Brix for prediction set.
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2.2. Vis-NIR spectral measurement

An online Vis-NIRS fruit sorting system (see Fig. 1)
was set up based on conventional grading system,
and equipped with a ¯ber spectrometer and a di®use
re°ectance con¯guration. This system consisted
of three parts: optical system, control system and
fruit transportation and sorting mechanism. The
online optical system was constructed as follows: A
¯ber spectrometer (USB2000þ, Ocean optics Inc.,
USA), a halogen tungsten lamp light source (12 v/
100W) were supported by a constant current power
(CCP) for acquiring more stable spectra of navel
oranges, an optic ¯ber, a condenser and a di®use
re°ectance con¯guration (the angle between inci-
dent light source and collector was 30�Þ. Di®use
re°ection spectra of navel oranges were collected at
5 fruits per second controlled by motor voltage.

Wavelength range was selected to be 600–950 nm
with an interval of 0.3 nm. A Te°on white panel
(6.5-mm thick) was used as the reference standard.
Spectrometer parameters settings, spectra data
collection and storage were carried out via a self-
developed software package based on JAVA language
(SUN MicroSystem, USA). The integration time for
navel oranges and reference spectra was 25ms.
Navel oranges were randomly placed upon the fruit
holder one by one. Spectra of each sample were
collected when they got through the optical system.
The experiments were repeated ¯ve times, and
the spectra collected each time were saved in an
independent document. The average spectra of
each sample were used for modeling. Software of
Unscramble V10.0 (CAMO PROCESS AS, OSLO,
Norway) and Matlab 7.0 were used for spectral
preprocessing and modeling.

2.3. Variable selection methods
and model evaluation

In our research, the di®erent variable selection
tools including MW-PLS, MC-UVE and WT-MC-
UVE methods were adopted for elimination of
the uninformative variables of fruit spectral data.
For MW-PLS method, variables with relative
low SSR or high absolute stability were retained.
PLS regression models were developed with di®er-
ent number of retained variables. For MC-UVE

Fig. 1. Diagram of optical system of the online NIRS fruit sorting system.

Table 1. Statistics of SSC in navel oranges used for the cali-
bration and prediction sets.

Min Max Mean SD CVa

Dataset Number (�Birx) (�Birx) (�Birx) (�Birx) (%)

Total 123 9.50 15.00 12.34 1.14 9.24
Calibration

set
92 9.50 15.00 12.33 1.14 9.24

Validation
set

31 9.60 14.00 12.35 1.14 9.23

aCV (%): coe±cient of variation

Online quantitative analysis of SSC by Vis-NIRS
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method, the stability is used to assess the reliability
of each variable in the models, and those variables
with larger absolute value of the stability are known
as informative and used in the modeling. The cuto®
value of stability is determined by the root mean
square error of prediction (RMSEP). Variables
whose stabilities are less than the cuto® value are
eliminated by MC-UVE.

The statistic correlation coe±cient ðrÞ and
RMSEP were used to evaluate the precision of the
PLS models with di®erent variable selection
methods. The ideal model should have higher value
of r and lower value of RMSEP. The numbers of
variables were determined when the RMSEP
reached the minimum.

3. Results and Discussions

3.1. Determination of the latent

variables (LVs) number and
wavelet parameters

Before variable selection is employed, the number of
LVs should be determined which a®ects both the
prediction precision and the calculation e±ciency.
The optimal number of LVs for PLS regression
models were obtained by using leave-one-out cross
validation technique and they presented both the
relative low value of RMSECV and high value of r.
Figure 2 shows the variation of RMSECV and r
with di®erent numbers of LVs. In our research, the
optimal number of LVs was determined to be 15 in
the following calculations.

WT has been proved to be a highly e±cient tool
for analytical data compression and de-noise. To
obtain optimum wavelet coe±cients construction,
two parameters should be optimized: the wavelet
¯lter and decomposition scale based on the optim-
ization results. The RMSEP and r were adopted as
criteria to investigate the in°uence of Daubechies,
Symmlet and Coi°et ¯lters for SSC models. By
calculation and comparison of calibration models
and the results in Shao and Zhuang,22 the simplest
db1 wavelet ¯lter and 5 scale decomposition was
adopted in the study.

3.2. Variables selection based
on MW-PLS and MC-UVE

methods

To determine the number of retained variables is
the main challenge of variable selection, which
decides the accuracy of the calibration model. When
the number is too small or too large, the perform-
ance of the model may be a®ected due to the loss of
informative variables or the existence of unin-
formative variables.

For MWPLS method, SSR should be calculated
before variable selection in di®erent LVs, infor-
mation variables usually locate more than one
spectral region due to the existence of many spectral
absorption bands. It is a useful method in searching
information region, and each region obtained by
MW-PLS may not always yield the optimum result.
The addictive processes were conducted by sorting
the SSR of the chosen number of LVs, and the PLS
regression models were developed using the retained
variables with relatively low SSR. The variation of
the RMSEP of the prediction set with di®erent
number of retained variables methods of MW-PLS
and WT-MWPLS was investigated. Figure 3 shows
the variation of RMSEP with the increase of vari-
able numbers for the raw spectra and the wavelet
coe±cients. Dotted and solid lines in Fig. 3 rep-
resent the RMSEP values obtained by PLS re-
gression with the retained variables of raw spectra
and WT spectra, respectively. As shown at the
beginning, the RMSEP are large, and then with
the increase of the number of retained variables,
RMSEP decreases sharply. For raw spectra, when
the number was 520, the lowest RMSEP was
obtained. When the number was bigger than 520,
with the increase of the number, RMSEP increased

Fig. 2. Variation of RMSECV with the number of factors by
PLS method for the raw spectra.
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gradually with a little °uctuation. It indicated that,
with lesser variables, useful variables were not
completely included and led to poor results.
Therefore, 520 retained variables were used to fur-
ther study the raw spectra and WT spectra, 280
variables were selected in our research.

For MC-UVE method, the stabilities of each
variable at wavelength range of 600–950 nm of the
raw spectra and the wavelet coe±cients are shown
in Figs. 4(a) and 4(b), respectively. In the two
¯gures, the dotted lines show the cuto® value.
Variables whose stability lies within the dotted lines
will be eliminated, and the variables whose stability
lies out of the dotted lines will be used for PLS
calculation. With the comparison of the two ¯gures
in Fig. 4, it can be seen that less retained variables
were selected when WT was conducted. PLS re-
gression models using the retained variables with
relatively high absolute stability were developed.
The variation of the RMSEP of the prediction
set with di®erent number of retained variables
is investigated. Figure 5 shows the variation of
RMSEP value with the number of retained vari-
ables. The dotted line represents the RMSEP values
obtained by PLS regression with the retained vari-
ables of raw spectra, and the solid line is obtained
with the retained wavelet coe±cients. It can be seen
that when the number of retained variables are
490 and 180 for the raw spectra and the wavelet
coe±cients, respectively, the lowest RMSEP are
obtained. Therefore, the number of retained vari-
ables of 490 was used for the raw spectra for further

study and the number of retained variables of 180
was used for the wavelet coe±cients.

3.3. Comparison of predicted results by
MW-PLS, MC-UVE-PLS and PLS

methods

With the parameters discussed above, PLS models
with di®erent inputs (obtained by MWPLS, WT-
MWPLS, MC-UVE and WT-MC-UVE methods)
were developed. The performances of the models in
predicting SSC in navel oranges were compared
with the PLS model with raw spectra. Results are
given in Table 2. It can be seen that, comparing
with the model obtained with raw spectra data,

Fig. 3. Variation of RMSEP with the number of retained
wavelengths and retained wavelet coe±cients selected by
MWPLS.

(a)

(b)

Fig. 4. The stability distribution of each variable: each
wavelengths (a) and each retained wavelet coe±cient (b) for
the prediction of SSC by the MC-UVE method. The two dot
lines indicate the lower and upper threshold.

Online quantitative analysis of SSC by Vis-NIRS
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better prediction results of SSC were obtained by
MW-PLS and MC-UVE treatment methods. Less
number of variables was needed, higher value of r
and lower value of RMSEP were obtained. When
WT was involved to compress the spectra, the
models were re¯ned again. Comparing with MW-
PLS method, fewer variables were retained by MC-
UVE, but the prediction results remain almost the
same. The best PLS model of SSC was WT com-
bined with MC-UVE with an r of 0.89, RMSEP of
0.54 �Brix and only 180 variables were required.

As discussed above, WT-MC-UVE resulted
in the best r and RMSEP of performance. There-
fore, the method was used for all spectra datasets
collected in di®erent times.23 Figure 6 illustrates the
predicted result for SSC in navel oranges with WT-
MC-UVE method. Vis-NIR spectroscopy success-
fully predicted the concentration of SSC in navel
oranges at the moving situation, as shown in Fig. 6.
It illustrates that Vis-NIR analysis of SSC in navel
oranges gives r of 0.88, and RMSEP of 0.55 �Birx.

The prediction results for the SSC obtained
in this study are superior to those obtained by
Cen et al.24 in orange juice with RMSEP of 0.73
�Brix and Miller and Zude-Sasse25 in Florida citrus
with r2 of 0.67 (coe±cient of determination). On
the other hand, better results have been obtained by
Gomez et al.26 in Satsuma mandarin (r2 ¼ 0:88;
RMSEP ¼ 0:33 �Brix) and McGlone et al.27 in

Fig. 5. Variation of RMSEP with the number of retained
wavelengths and retained wavelet coe±cients selected by MC-
UVE.

Table 2. Comparison of the results obtained by
PLS regression with di®erent processing methods.

Processing
method

No. of
variables r

RMSEP
(�Birx)

None 1059 0.84 0.66
MWPLS 520 0.87 0.59
WT- MWPLS 280 0.88 0.57
MC-UVE 490 0.87 0.60
WT-MC-UVE 180 0.89 0.54

Fig. 6. The predicted results for SSC in navel orange for the prediction set from the PLS models processing with WT-MC-UVE
method; The X error bars are the means and the standard errors of the measured values, and the Y error bars are the means and the
standard errors of the NIR predictions.
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mandarin with r2 of 0.93 and RMSEP of 0.32 �Brix.
This may contribute to the application of trans-
mittance model. In addition, the prediction accu-
racy in this study is slightly poor in comparison to
measurement accuracies achieved on many other
fruit types.28,29 This may contribute to the in°uence
of thicker skin of navel orange than other fruit
types. Few studies have reported the ability of an
online Vis-NIR technology to determine SSC. Sun
et al.30 evaluated the use of Vis-NIR in measuring
SSC of intact pears online, and better results were
acquired with RMSEP of 0.53 �Brix. However, no
reports were found about online SSC measurements
of navel oranges.

4. Conclusions

Variable selection methods including MW-PLS and
MC-UVE were proposed for simplifying calibration
models for online quantitative analysis of SSC by
Vis-NIR. It was proved that two methods are e±-
cient, and slightly better results can be obtained
compared with full-spectral PLS methods. Fur-
thermore, WT was introduced before variable
selection. The results show that WT combined with
the MC-UVE method can further simplify modeling
process, and enhance the e±ciency in building the
models, and it is feasible for the online Vis-NIR
system for nondestructive detection of SSC in navel
oranges.
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